16z^2=5

Simple and best practice solution for 16z^2=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16z^2=5 equation:



16z^2=5
We move all terms to the left:
16z^2-(5)=0
a = 16; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·16·(-5)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*16}=\frac{0-8\sqrt{5}}{32} =-\frac{8\sqrt{5}}{32} =-\frac{\sqrt{5}}{4} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*16}=\frac{0+8\sqrt{5}}{32} =\frac{8\sqrt{5}}{32} =\frac{\sqrt{5}}{4} $

See similar equations:

| 3^2x+4=18 | | 7x-3=233 | | -n^2+2n=1 | | 18r=126 | | -t^2-6t=8 | | Y=-12+-4x | | 4x+12=50+2x+10 | | 83.7=4.5x | | -3=x-1(1/2) | | 25z^2+11=0 | | -3=x-11/2 | | 3=-48d^2+24d | | x+10=5+6x | | 125x=365 | | 2s^2+9s=-4 | | 135x=75 | | 7n-7(n+6)=3(1+n) | | -6m+-5=43 | | 2.x-8=(-24) | | y/10+4=5 | | x+73+x+51+72=180 | | 5^(x-1)=35 | | 3y+4/8=19 | | -3(1+5r)=-25-4r | | 2.4g=7.56 | | 8x-2(x+4)=15 | | 4+-3x=2x+-6 | | (8x2)+(8x9)=8x( | | 1+3x+-x=x+-4x+2x | | 4(x)^1/2=32 | | (2x-5)2=2x+6 | | -2u−15u−-16=-1 |

Equations solver categories